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Recognizing social interactions, e.g., two people shaking hands, is important for obtaining
information about other people and the surrounding social environment. Despite the
visual complexity of social interactions, humans have often little difficulties to visually
recognize social interactions. What is the visual representation of social interactions and
the bodily visual cues that promote this remarkable human ability? Viewpoint dependent
representations are considered to be at the heart of the visual recognition of many visual
stimuli including objects (Bülthoff and Edelman, 1992), and biological motion patterns
(Verfaillie, 1993). Here we addressed the question whether complex social actions acted
out between pairs of people, e.g., hugging, are also represented in a similar manner.
To this end, we created 3-D models from motion captured actions acted out by two
people, e.g., hugging. These 3-D models allowed to present the same action from different
viewpoints. Participants’ task was to discriminate a target action from distractor actions
using a one-interval-forced-choice (1IFC) task. We measured participants’ recognition
performance in terms of reaction times (RT) and d-prime (d’). For each tested action we
found one view that led to superior recognition performance compared to other views.
This finding demonstrates view-dependent effects of visual recognition, which are in line
with the idea of a view-dependent representation of social interactions. Subsequently,
we examined the degree to which velocities of joints are able to predict the recognition
performance of social interactions in order to determine candidate visual cues underlying
the recognition of social interactions. We found that the velocities of the arms, both feet,
and hips correlated with recognition performance.
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INTRODUCTION
Humans are social beings who daily physically interact with other
humans, e.g., when greeting a friend with a hug. We refer to
these non-verbal physical interpersonal interactions such as shak-
ing hands, kissing, or fist fighting as social interactions. The
visual recognition of physical social interactions is important for
humans to successfully navigate through their social and physical
environment, for example, when avoiding a street in which people
are fighting. Shedding light onto the visual processes underly-
ing visual social interaction recognition helps understanding how
humans achieve this feat.

Relatively little is known about the visual processes underly-
ing the visual recognition of social interactions. Previous research
has mainly focused on elucidating the mechanisms underlying
the recognition of individual actions. For example, research on
biological motion highlighted the importance of dynamic infor-
mation in the recognition of individual actions, e.g., walking
(Blake and Shiffrar, 2007), and a large body of neuroscientific
work has examined the contributions of the motor system to
action recognition of individual actions (Kozlowski and Cutting,
1978; Prinz, 1997; Gallese and Goldman, 1998; Keysers et al.,
2010—see Jacob and Jeannerod, 2005; Mahon and Caramazza,
2008; Hickok, 2009 for a debate on this issue). However, the visual

recognition of social interactions has received scant attention
(Neri et al., 2006).

There is strong evidence that the underlying representation
of visual recognition is view-dependent (for alternative views
on this topic see e.g., Biederman, 1987). View dependencies in
visual recognition are taken as evidence for the underlying visual
representation being tuned to certain views and thereby high-
light an important organizational principle of visual recognition.
Previous research has shown view dependencies in the recog-
nition of static objects (Bülthoff and Edelman, 1992; Tarr and
Buelthoff, 1995), and faces (Hill et al., 1997). A special kind
of view dependency, namely orientation sensitivity, has been
demonstrated for the visual recognition of static body postures
(Reed et al., 2003). Overall, view dependencies in the recognition
of static visual patterns are frequently observed and indicate that
the underlying visual representation is view-dependent.

Actions are inherently dynamic resulting in a change of body
posture over time. This biological motion information is con-
sidered to be critical for action recognition. Point light displays
are an elegant way to examine the ability of the visual sys-
tem to recognize biological motion (Johansson, 1973) as these
displays consist mainly of motion but little structural informa-
tion. Previous research using point light displays demonstrated
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that biological motion informs the observer about the executed
action (Dittrich, 1993) and about socially relevant information.
For example, humans are able to readily recognize the gender
(Kozlowski and Cutting, 1977, 1978; Pollick et al., 2005), emo-
tions (Atkinson et al., 2004), and the identity (Loula et al., 2005;
Jokisch et al., 2006) of point light walkers.

View dependencies have also been reported for the recogni-
tion of dynamic biological motion patterns of walkers (Verfaillie,
1993; Troje et al., 2005). For example, identification of biologi-
cal motion patterns was found to be better for the trained view
than for novel views (Troje et al., 2005). In the light of recent
suggestions that the motor systems contributes to action under-
standing (Kozlowski and Cutting, 1978; Prinz, 1997; Gallese and
Goldman, 1998; Keysers et al., 2010—although this view is not
undebated: Jacob and Jeannerod, 2005; Mahon and Caramazza,
2008; Hickok, 2009), recent evidence from a physiological study
can be interpreted in favor for view-dependencies in visual action
recognition. Here, Caggiano et al. (2011) reported that in mon-
keys motor-visual neurons, which are considered to be important
for action understanding (Gallese et al., 2004), exhibit view-
dependent responses when processing object-directed actions.
However, view dependencies in the visual recognition of dynamic
social actions occurring between pairs of people, such as two
person shaking hands, has not been investigated yet.

Here we examined viewpoint dependencies in the recogni-
tion of complex social actions, in particular social interactions.
We motion captured interactions (high five; handshake; hug)
acted out by pairs of participants and created 3-D models of
these interactions. In the actual experiment, participants saw
these interactions one at a time and had to report whether the
shown interaction matched a predefined interaction (1IFC task).
We manipulated the type of interaction (hug, high-five, or hand-
shake) and the viewpoint [behind, side, top, 45◦ (angled) view]
from which participants saw the interaction. Moreover, because
previous research has shown that visual recognition is very rapid
(Thorpe et al., 1996; Furl et al., 2007; de la Rosa et al., 2011), we
probed the visual recognition of interactions at different presen-
tation times. We recorded participants’ accuracy (as measured by
d-prime) and reaction time to identify a predefined social interac-
tion. We reasoned that if visual recognition of social interaction is
view-dependent, then recognition performance should vary with
the viewpoint.

If visual recognition of social interactions is view-dependent,
then low level visual cues (e.g., velocity of bodily joints projected
onto the viewing plane), which change over different views, might
be able to explain the visual recognition of social interactions.
To answer the question, which visual cues might support the
recognition performance of social interactions, we analyzed the
physical body motion patterns to determine candidate visual cues
that participants might have used for the recognition of social
interactions. Specifically, we calculated the velocity of each joint
(e.g., left elbow) after it had been projected on the viewing plane.
We used these velocities and also the correlations between oppo-
nent joints (e.g., left and right elbow) velocities as predictors for
the recognition performance observed in the experiment. The
latter velocities had been calculated since movement of oppo-
nent limbs is considered to be critical for the action recognition

of point light actors (Casile and Giese, 2005). In addition, we
correlated the joint velocities between corresponding joints of
the two actors (e.g., the velocity of Person’s A left elbow with
the velocity of Person’s B left elbow). The purpose of these cor-
relations was to capture the temporal synchronization between
actors, which influences social interaction recognition (Neri et al.,
2006). We then used the velocities of individual joints, opponent
joint correlations, and the correlation between corresponding
joints as predictors for the recognition performance obtained in
experiment. We expected that joints that correlate highly with
the recognition performance are candidate visual cues that par-
ticipants might have used for the visual recognition of social
interactions.

METHODS
PARTICIPANTS
Ten right-handed participants (mean age = 26.4; sd = 6.6)
recruited from the local community in Tübingen participated
in the experiment. All participants gave their written informed
consent prior to the experiment. All participants had normal or
corrected-to-normal vision. The experiment was conducted in
accordance with the Declaration of Helsinki.

STIMULI AND APPARATUS
The stimuli were motion captured actions (handshake, hug, high
five) acted out by 17 different pairs of actors using MVN suits
(Xsens Technologies B.V., Eschede, Netherlands) (recording sam-
pling rate: 120 Hz). Actors were facing each other in an empty
room and always started out from the same resting position,
which was a standing pose at a predefined spatial position. A
sound served as a start signal for actors to act out one of the three
actions as instructed by the experimenter. After the acting, actors
went back into their resting position. Each pair of actor acted out
each action at least five times.

The motion capture data was post-processed in Blender and
Matlab: The motion capture clips were chopped in such a way
that they started displaying 40 ms of resting position and stopped
40 ms after the apex of the interaction had been reached (e.g., the
moment when the actors first touched each other). The motion
capture was animated using a stick figure by wrapping an orange
cylinder around each limb and an orange symmetrical sphere on
the joints (see Figure 1). In the end, 5 different 3D models for
each of the three interactions (handshake, hug, high five) were
used. During the experiment each model was shown 144 times
across all experimental conditions. We used the custom writ-
ten software based on Matlab and the Psychophysics toolbox3
(Brainard, 1997; Pelli, 1997; Kleiner et al., 2007) to display the
stimuli in the experiment on a Dell LCD screen using a Dell PC.
The Horde3D engine was used within the Psychophysics toolbox
to display the stick figure animations from different viewpoints.

PROCEDURE
Participants sat in front of the computer screen and orally
received the following information about the experiment from
the experimenter. The experiment consisted of three experimental
blocks which were run consecutively on the same day. An exper-
imental block started by presenting a white word in the center of
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the black computer screen. This word indicated the target interac-
tion (hug, high five, or handshake) that participants had to look
out for during the experimental block. After pressing the space
bar the screen turned black and the experiment started by pre-
senting the experimental trials. An experimental trial consisted of
the presentation of an interaction (two stick figures on a black
screen) followed by a two second answer interval, which con-
sisted of a black screen. If participants think they saw the target
interaction, they pressed the “>” key and “z” otherwise (1IFC).
Participant could give their answer at any time during the presen-
tation. The reaction time was measured from the beginning of the
presentation. The pressing of an answer key resulted in the imme-
diate skipping forward to the end of the current trial. Trials were
separated by a 500 ms inter-stimulus-interval consisting of a black
screen. An experimental block consisted of 144 experimental
trials. Participants were instructed to answer as accurately and fast
as possible.

Each experimental block tested the recognition of one of the
three interactions. Every participant had to recognize every inter-
action. The testing order of interactions (and hence experimental
blocks) was randomized across participants. Every experimen-
tal block tested all possible combinations of the two factors of
interest: four viewpoints (profile, half profile, behind, top; see
Figure 1) and five presentation times (0.4, 0.6, 0.8, 1.0, 1.61 s).
Each combination of viewpoint and presentation time was tested
36 times within an experimental block. 18 of these 36 trials were
target trials and 18 were non-target trials. The 18 non-target trials
consisted of a counterbalanced presentation of the two non-target
interactions. Hence an experimental block consisted of 4∗5∗36 =
720 trials. The trials were presented in random order. Participants
completed three of these experimental blocks (each aiming for a
different action and randomized order across participants) for a
total of 2160 trials. The experiment lasted around 2 h.

The factors viewpoint, action, presentation time were com-
pletely crossed within subject factors. The dependent variables
were reaction time (measured in s) and accuracy (as mea-
sured by d′).

FIGURE 1 | Example stimuli for each viewpoint and action condition

showing the last frame from an action movie used in the experiment.

Different actions are shown across rows (handshake, high five, hug) and
different viewpoints of the action are shown across columns (angled,
behind, side, top).

RESULTS
We removed trials in which participants did not give an answer or
where responses were faster than 200 ms (5% of the total trials).
These latter responses were considered uninformed guesses.

REACTION TIMES
The mean reaction times (RT) for trials, in which participants
correctly identified the target, are shown in Figure 2. Reaction
time increases with increasing presentation time for all actions
and viewpoints. The effect of viewpoint on RT seems to vary
across actions. We examined the observed RT patterns by means
of a three-factorial completely crossed within subjects ANOVA.
Viewpoint, action, and presentation time served as within sub-
ject factors and mean RT as a dependent variable. We report
Greenhouse-Geisser corrected p-values in order to counteract
observed violations of sphericity. The main effect of presen-
tation time, F(4, 36) = 18.863, p > 0.001, and action, F(2, 18) =
9.618, p = 0.004, were significant. The main effect of view-
point was non-signficant, F(3, 27) = 1.322, p = 0.290. The inter-
action between action and presentation time, F(8, 72) = 0.716,
p = 0.564, and the interaction between presentation time and
viewpoint, F(12, 108) = 1.192, p = 0.331, were non-significant.
However, the interaction between action and viewpoint was sig-
nificant, F(6, 54) = 4.786, p = 0.005. The three-way interaction
between viewpoint, action, and presentation time was non-
significant, F(24, 216) = 1.109, p = 0.369. The significant inter-
action between action and viewpoint indicates that viewpoint
influences visual recognition for some actions more than for
others.

Figure 3 shows the significant interaction between presenta-
tion and action. Clearly, the effect of viewpoint on action was
different across the three actions. While there seems to be lit-
tle influence of viewpoint on RT for the recognition of high five
actions, the RT to hug and handshake actions seem to depend
on the viewpoint. Specifically, the behind view resulted in the
shortest RT for handshakes and the top view resulted in the short-
est RT for the hugs. We conducted all pairwise comparisons of

FIGURE 2 | Mean reaction times as a function of presentation time

shown for each action and viewpoint separately.
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viewpoints for each action separately using the Holm correc-
tion. For handshake and high five actions, none of the viewpoint
comparisons produced a significant result (p > 0.05). The only
significant difference was found for the recognition of hug actions
when viewed from the top compared to when viewed the profile
view, t(9) = 3.77; pHolm corrected = 0.026. The top view allowed
faster recognition. Overall the analysis of RT shows a significant
effect of viewpoint on RT for the recognition of hug actions.

D-PRIME
D′ provides a measure for participants’ ability to discriminate
the target from non-targets with higher d′ values indicating
better discrimination performance. The mean d′ increases as
a function of presentation time for each viewpoint and action
(Figure 4) indicating that participants were better able to tell the
target from non-targets with increasing presentation time. The d′-
presentation time curves seem to differ for different viewpoints of
the same action.

FIGURE 3 | Mean reaction times given for each action and viewpoint

separately (collapsed across presentation duration). Bars indicated one
standard error from the mean.

FIGURE 4 | Mean d′ as a function of presentation time shown for each

action and viewpoint separately.

We analyzed the effect of presentation time, viewpoint, and
action on d′ in a completely crossed within subject ANOVA.
Because we observed deviations from sphericity for some effects,
we report Greenhouse-Geisser corrected p-values where appro-
priate. The main effect of presentation time, F(4, 36) = 60.52,
p < 0.001, and angle was significant, F(3, 27) = 3.59, p = 0.027.
The main effect of action was non-significant, F(2, 18) = 0.433,
p = 0.655. The interaction between action and presentation
time, F(8, 72) = 1.279, p = 0.268, and the interaction between
viewpoint and presentation time, F(12, 108) = 1.111; p = 0.367,
was non-significant. The interaction between viewpoint and
action was significant, F(6, 54) = 6.670; p < 0.001. The three
way interaction between viewpoint, action, and presentation
time was non-significant, F(24, 216) = 0.956; p = 0.468. Overall,
the ANOVA suggests that discrimination of target from non-
targets dependent on the particular combination of action and
viewpoint.

Figure 5 shows the significant interaction between action and
viewpoint. The modulation of d′ with viewpoint is stronger
for the recognition handshakes and high-fives than for the
recognition of hugs. To examine the effect of viewpoint on d′
in more detail we conducted all pairwise comparison of the
four viewpoint d′ for each action separately using the Holm
correction. As for handshakes, we only found the following com-
parisons to be significant. D′ of top views were significantly
higher than of angled views, t(9) = 3.396; p = 0.040, and d′ of
behind views were significantly higher than of angled views,
t(9) = 5.149; p = 0.004. High-fives when seen from the side
view were associated with a significantly higher d′ than when
seen from the top, t(9) = 4.513; p = 0.009. None of the other
viewpoint d′ comparisons for high five actions were signifi-
cant (p > 0.05). Finally we did not find any differences with
respect to d′ differences across viewpoints for hugging actions
(p > 0.05). In sum the d′ analysis demonstrates viewpoint mod-
ulations of d′ for the recognition of handshake and high-five
actions.

FIGURE 5 | Mean d′ given for each action and viewpoint separately

(collapsed across presentation duration). Bars indicated one standard
error from the mean.
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CORRELATING PHYSICAL MOTION PATTERNS WITH RECOGNITION
PERFORMANCE
The experiment suggests that social interaction recognition per-
formance is not the same across all views and therefore, support
the hypothesis that not all social interactions are represented in
a view invariant fashion. What are candidate visual cues that
participants might have used for the visual recognition of social
interactions? One reasonable assumption is that visual cues used
during the visual recognition of social interactions should corre-
late with observed recognition performance. Specifically, we used
the velocities of bodily joints (e.g., the left elbow) to predict the
observed recognition performance of the previous experiment.
We used joint velocities within our analysis because biological
motion information as provided by joint movements are critical
for the recognition of actions (Blakemore and Decety, 2001; Blake
and Shiffrar, 2007).

We used linear regression to predict recognition performance
from joint velocities. We employed three types of predictors. First,
we used the velocity of individual joints (individual joint veloc-
ities). Second, we correlated the velocities of joints that occur
on both the left and right side of the same body (e.g., left and
right elbow) across time because previous research suggest that
opponent or antiphase movement of these joints is critical for
action recognition (Giese and Poggio, 2003; Casile and Giese,
2005; Thurman and Grossman, 2008). We will refer to this type
of correlation as opponent joint correlations. As the third type
of predictor served the correlation between the velocities of cor-
responding joints from the two actors of the same pair (joint
velocity correlations). The motivation for the use of this type of
predictor stems from previous research demonstrating the impor-
tance of temporal synchrony between actions of the interaction
partners for the visual recognition of social interactions (Neri
et al., 2006). Because we only used symmetric interactions in
which both actors were doing very similar movements, one way to
measure this interpersonal synchrony is by measuring the veloc-
ities of corresponding joints on the two actors across time, e.g.,
correlate the velocity of the right elbow of Person A with the
velocity of the right elbow of Person B.

In the following analysis, we combined RT and d-prime into
a single performance measure (RT corrected d prime) to facili-
tate the interpretation of our results using a univariate regression
analysis instead of a multivariate regression analysis.

METHODS
BODY MODEL
For the analysis we used the joints as specified by the bvh body
model provided by MVN. This body models consisted of 23 joints
(see spheres in Figure 1).

DATA ACQUISITION
We used MATLAB and the Motion Capture Toolbox (Lawrence,
2009) to determine the 3D position of each joint for each
action, view, actor, and animation frame. Note that an individ-
ual joint can move because the actor is moving as a whole (global
body motion) or because the joint itself is moving (local joint
movement). Moreover, note that the global position of the body
in 3D space of the MVN bvh body model is given by the position

of the central hip joint. In order to separate global body motion
from the local limb movement, we subtracted the hip 3D space
coordinates form all other joint 3D coordinates. As a result, the
hips indicate global body position while the remaining joints indi-
cate local joint movement. We then calculated the 2D projections
of the 3D joint positions on the viewer’s plane. Subsequently, the
velocities of each joint in 2D space was calculated as the Euclidean
distance of the 2D positions between two successive animation
frames. All analysis was carried out on these joint velocities
that were obtained for each action, view, actor, and animation
frame.

DATA ANALYSIS
We used linear regression to predict recognition performance
from joint velocities. Because we had two measures of recogni-
tion performance in the experiment (d prime and reaction time),
we combined the two measures into a single measure for the sake
of ease of interpreting univariate regression results: We calculated
the d prime values adjusted for reaction time by using reaction
time as a covariate in the d prime ANOVA model of the results
section of the experiment. In particular, we used the inverted reac-
tion time as a covariate to ensure that for both reaction time and d
prime, better performance is associated with a larger values. The
adjusted mean d prime values served as the dependent variable
for the regression analysis.

For the individual joint velocity predictors we integrated the
velocities for each joint, actor, action, and view across time.
Specifically, this integration of velocities was done for the five
probed presentation times (0.4, 0.6, 0.8, 1.0, 1.61 s) separately.
The opponent joint velocities were simply the correlation of cor-
responding left and right joints across time calculated for each
presentation time separately. As for the joint velocity correlations,
we calculated the correlations between velocities of correspond-
ing joints on the two actors of the same pair across time. This
correlation was calculated separately for each of the five probed
presentation times. The resulting joint velocities and joint velocity
correlations were then used as predictors. There were 8 opponent
joint velocity predictors, 23 individual joint velocity predictors,
and 23 correlated joint velocity predictors.

In the frist step, stepwise multiple regression was used to
reduce the initial set of 54 predictors to a smaller set of predic-
tors suitable for recognition performance prediction. We used
stepAIC function from the statistical package R with forward
and backward elimination using the Akaike information criterion
(AIC) as selection criterion. The starting model for the stepwise
regression procedure was one that contained only the intercept.
Stepwise regression returned a model with 33 predictors explain-
ing 98.68% of the variance in the recognition performance. In a
second step, we simplified this model using all subset regression.
The best subset regression returned the best model for all possible
model sizes (1–33). A visual inspection of the plot of adjusted-
r2 and the BIC criterion (of the best fitting models) against the
model size (not shown here) showed that adjusted-r2 and BIC
changed only slightly with model size (i.e., the function asymp-
totes) for models containing more than 15 predictors (benefit of
a model with 16 parameters compared to one with 15 parame-
ters: r2: less than 0.75% at a 94% fit; BIC less than −4.29 at a BIC
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value of −105). Hence, we chose the best fitting model with 15
predictors as our final model.

Relative importance of the predictors of the final model were
determined by calculating the average r2 across all predictor
orderings (Grömping, 2006). Relative importance measures the
average amount of variance in the recognition scores explained
by predictor.

RESULTS
The final model contained 15 predictors from 11 joints and
explained 94.22% of the variance of the d prime values (Figure 6).

FIGURE 6 | d′ values adjusted for mean RT of the behavioral

experiment (dotted lines and crosses) and the predicted d’

performance from the regression model (solid circles).

Table 1 | Predictors of the final model used to predict recognition

performance from joint velocities.

Predictor Pr(>|t|) Relative

importance

(average r2)

1. Right wrist 6.97E-014 0.14873565

2. Ankle (opponent joint correlation) 1.64E-006 0.09743588

3. Hip (opponent joint correlation) 9.85E-006 0.09048241

4. Left toe 1.78E-011 0.0824363

5. Right elbow 1.10E-011 0.08204858

6. Toe (opponent joint correlation) 0.000406 0.07884528

7. Right toe 3.75E-008 0.07465615

8. Right ankle 8.14E-006 0.06588832

9. Right shoulder 3.34E-007 0.05590034

10. Chest 0.000177 0.05561856

11. Right ankle (joint velocity correlation) 0.005193 0.02904772

12. Elbow (opponent joint correlation) 2.83E-006 0.02521843

13. Left collar (joint velocity correlation) 0.0007 0.02314838

14. Left toe (joint velocity correlation) 0.000103 0.02093676

15. Right wrist (joint velocity correlation) 2.83E-006 0.01180915

If no predictor type is specified in brackets, predictors refer to individual joint

velocities.

The predictors are listed in Table 1 and the corresponding joints
are shown in Figure 7. The model contained predictors refer-
ring to individual joint velocities, opponent joint velocities, and
joint velocity correlations. These predictive joints were mostly
located on the feet, the right arm, and the upper body. The rel-
ative importance of each predictor as measured by the average
R2 across different predictor orderings indicated that the individ-
ual joint velocities of the right wrist explains most of the variance
in the recognition performance. Other important predictors as
measured by relative importance were opponent joint movements
of hips (i.e., left and right hip) and feet. On average, individ-
ual joint velocities and opponent joint correlations explained
most of the variance (Table 1) and the correlated joints veloci-
ties explained a smaller amount of variance in the recognition
performance. Interestingly, the distance between the two per-
sons did not turn out to be a significant predictor of recognition
performance as indicated by the lack of the central hip as a pre-
dictor in the model. In summary, this analysis demonstrates that
low level visual cues (individual joint movements and correlated
joint movements) provide one possible explanation for the view-
dependent visual recognition of social interactions including the
the optimal view of social interactions.

So far we assessed the predictors in terms of their ability to pre-
dict the overall recognition performance, i.e., the recognition per-
formance across all experimental conditions. However, it is likely
that not all joints are equally informative across all experimental
conditions. For example, the hands might be more informative
for recognition performance changes across different viewpoints

FIGURE 7 | The joints whose velocity profile was most predictive for

the recognition performance as observed in the experiment.
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than across different actions. To gain greater insight about which
predictors are most predictive for individual experimental factors,
we addressed the question to what degree the predictors listed in
Table 1 are able to predict performance changes for each experi-
mental factors separately (viewpoint, presentation time, action).
For the experimental factor under scrutiny, we regressed recog-
nition performance on the two other experimental factor (not
under scrutiny) and obtained the residuals from the fitted model.
Note that these residuals have been adjusted for all experimental
effects except for the experimental factor in question and there-
fore, carry mostly information about the experimental factor in
question. Using these residuals, we regressed recognition perfor-
mance on the predictors in Table 1. Finally, we determined the
relative importance of each predictor, to determine the predictor
is most predictive for the recognition performance changes across
the experimental factor in question. The results are shown in
Figure 8. The 15 predictors have different predictive power across
the three experimental manipulations. The best predictor for per-
formance changes across different viewpoints is the opponent
hips correlation. The right wrist is best for predictor for differ-
ent recognition performances across presentation times. Finally,
the end of left foot best predicted changes in recognition per-
formance across different actions. The high predictability of the
end of left foot arises from the different walking patterns associ-
ated with different actions. For example, actors stepped often only
one step forward during a high five and handshake action while
taking several steps when conducting a hug action. Moreover,
the step was faster during the handshake than during the high
five action.

Overall, the results of this analysis suggest that different pre-
dictors are associated with different predictive power for different
experimental manipulations. Yet, it is noteworthy that the pre-
dictor “end of left foot” is overall a good predictor for all three
experimental manipulations since it is associated with high rela-
tive importance for all three experimental manipulations.

FIGURE 8 | Relative importance of each predictor (numbers) of Table 1

shown for each experimental factor separately. The numbers refer to the
predictor number in Table 1.

DISCUSSION
The experiment investigated view dependencies in the visual
recognition of hug, handshake, and high-five actions. The exper-
iment showed that RT magnitude depended on the viewpoint for
hug actions and that d′ values depended on the viewpoint for high
five actions and handshake actions. Hence, the viewpoint had an
effect on either RT or d′ for each social interaction. These view-
point modulations of recognition performance are in line with
the idea that not all social interactions are recognized in a view
invariant manner.

The analysis of the relationship between joint velocities and
recognition performance revealed several candidate movements
that offer a possible explanation for view-dependent visual recog-
nition of social interactions based on low level visual cues. In
particular, we found joints relating to the right hand, the feet,
and to the upper body to be most informative about recogni-
tion performance. This result aligns with previous reports about
critical sources of visual information for the recognition of bio-
logical motion (see below). We also found that the correlation of
velocities of opponent limbs are particularly predictive of recog-
nition performance. Although we did not demonstrate a causal
relationship between opponent movement and recognition per-
formance in the present study, this finding is in line with the
suggestion that anti-phase limb movements are critical for bio-
logical motion recognition (Casile and Giese, 2005; Thurman and
Grossman, 2008). In addition, we also found that movements
between corresponding joints on the two persons (in particular
the arm, left collar, and the feet) were predictive of recognition
performance as it is expected from studies on the temporal syn-
chrony of interactive movements (Neri et al., 2006). In summary,
all three types of velocities are predictive of recognition perfor-
mance, which is in line with previous reports that opponent
movement and the temporal relationships between interaction
partners are important. Moreover, the bodily location of the
visual cues as suggested by this analysis are in line with previous
experimental results showing that the movement of extremi-
ties (leg and arms) (Troje and Westhoff, 2006; Thurman and
Grossman, 2008) and upper body (Thurman et al., 2010) is diag-
nostic for the recognition of point light walkers and stick figure
walkers.

Additional analysis showed that the predictors are to differ-
ent degrees indicative of recognition performance changes along
the three experimental manipulations (viewpoint, presentation
time, and action). For example, the opponent movement of the
hips was particularly predictive for performance changes across
viewpoints, the end of left foot was most predictive for the perfor-
mance changes across actions, and the right wrist was indicative
of performance changes with changes in the presentation time.
Hence not all predictors were equally effective for performance
changes associated with the three experimental manipulations.

This physical analysis of the velocity patterns is a first step
to understand which visual cues participants relying on during
the visual recognition of social interactions. We suggest candi-
date visual cues that carry information about social interactions
and therefore, might be used for the recognition of social interac-
tions. Although these cues are able to explain the view-dependent
recognition of social interactions on a theoretical level, additional
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experiments are required to verify whether participants indeed
use these visual cues for the recognition of social interactions.

CAN THE OBSERVED VIEW-DEPENDENCIES SOLELY EXPLAINED BY
VISUAL LEARNING OF LOCAL BODILY CUES?
An alternative explanation of the findings in our study is that
participants learned informative local bodily cues, e.g., the move-
ment patterns of the feet, and recognized actions based on these
local cues. If participants learned these local cues in a view depen-
dent manner and rely on them during recognition, one would
expect recognition performance of social interactions to depend
on the viewpoint. However, this type of view-dependent recogni-
tion performance would not speak to a view-dependent encoding
of social interactions but rather to a view-dependent encoding of
local bodily cues.

To asses the plausibility of learning of local bodily cues, we
examined the effect of stimulus on recognition performance in
the current experiment. First, we reasoned that if participants
learned to pick up subtle local differences due to the repeated
presentation of the stimuli, we would expect the observed effects
to change if the same analysis was conducted on a more limited
data set for which the number of stimulus repetitions was much
smaller (and hence learning was less pronounced). We analyzed
only the first 3 experimental blocks of each participant. For the
first 3 experimental blocks, all three interactions were tested for
8 out of the 10 participants (note that interaction presentation
order was randomized across participants). The subsequent anal-
ysis was, therefore, carried on the 8 participants for which we had
data for every interaction. The average repetition rate of stim-
uli within this limited data set was 15 repetitions per stimulus
(compared to 36 repetitions in the full data set). We ran the same
analyses on this more limited data set as reported in the results
section. The RT analysis on this limited data set showed the same
significant effects as the original analysis. Likewise, the d prime
analysis exhibited the same pattern of significant effects with the
limited data set as it did with the full data set. Hence restricting
the analysis to the first three experimental blocks of the data did
not change the pattern of the results.

Second, we addressed the issue of learning more directly by
conducted a mixed linear model analysis for both d prime and RT
data separately. We reasoned that if learning occurred, the perfor-
mance should improve the more often participants participated in
experiments and therefore, the more often they saw the stimuli.
The frequency of participants’ engagements in the experimental
task was measured by the variable experimental block. In both
the RT and d-prime analysis, participant was a random effect
and experimental block was a fixed effect, whose intercept and
slope was allowed to vary in a by-participant manner (i.e., the
effect of block was modeled for each participant separately). The
results show a non-significant effect of block on both the RT
[t(61) = −1.68; p = 0.09] and the d-prime [t(61) = 1.225, p =
0.225] analysis suggesting that RT and d-prime values did not
change significantly across time. It, therefore, seems unlikely that
performance largely changed with repeated presentation of the
stimuli.

Finally, one could argue that learning is rapid and, therefore,
is completed within the first experimental block. We therefore,

looked at the change of RT for correct target identifications over
trials within the first experimental block. We ran a mixed effects
model with trial number as a fixed factor and participant as
a random factor. The intercept and slope for trial was fitted
in a by-participant fashion to model the performance change
over time for each participant separately. The analysis showed a
non-significant effect of trial number indicating that RT did not
change significantly over time, t(1115) = −1.09, p = 0.275. We did
not calculate the analysis for d prime because the d prime analysis
requires averaging of participants’ responses across a reasonable
number of stimulus repetitions, which was not given for the data
of the first block.

Overall, the results of the additional analyses showed little evi-
dence for profound learning effects. We, therefore, think that the
observed effects are unlikely due to learning alone and that partic-
ipants did not rely solely on learned local visual cues during social
interaction recognition.

VIEW-DEPENDENT ENCODING OF SOCIAL INTERACTIONS OR
VIEW-DEPENDENT ENCODING OF INDIVIDUAL ACTIONS?
The recognition of individual actions as displayed by point light
walkers are known to be view-dependent (Verfaillie, 1993). One
could therefore, argue that the view-dependent recognition of
social interactions is simply due to the view-dependent visual
recognition of the individual actions. Is the view-dependent
recognition of social interactions due to view-dependent recogni-
tion of individual actions or due to view-dependent recognition
of the interactions? There is evidence that the recognition of
social interactions is more than the simply the recognition of the
constituent individual actions. If the recognition of an interac-
tion were simply the recognition of the constituting individual
actions, there should be no interaction between the interaction
and the recognition of individual actions. However, this is not the
case. Neri et al. (2006), for example, showed that synchronized
(meaningful) compared to desynchronized (meaningless) inter-
actions lead to better recognition performance of an individual
action constituting the interaction. Because the meaningfulness
of an interaction influences the recognition of individual actions,
their results suggests that the visual recognition of social interac-
tions is more than merely the recognition of individual actions.
In a similar vein, Manera et al. (2011) showed that participants’
were better to discriminate a point light actor from noise if this
actor was preceded by a communicative compared to a non-
communicative agent. Seeing the dyad rather than merely the
participating individuals also positively influenced the recogni-
tion of emotions within interpersonal dialog. Clarke et al. (2005)
showed that the recognition of love and joy was impaired if
the interaction partner was not shown. Therefore, perceiving the
another person’s action as part of a communicative interaction
improves recognition performance. Overall, these result provide
accumulating evidence that the visual recognition of interactions
goes beyond the mere recognition of the individual actions.

In line with these previous results, our analysis of the joint
velocity patterns suggests that correlations between velocities of
corresponding joints on the two actors are predictive of recog-
nition performance. Hence, joint velocity correlations between
the two actors carry social interaction specific information, which
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could potentially be used by participants in the visual recognition
of social interactions.

Despite the ability of these of joint velocity correlations to
predict recognition performance, individual joint velocities and
opponent joint velocities explain the bulk part of the recognition
performance. This suggests that view-dependent recognition of
individual actions might also contribute to the view-dependent
recognition of social interactions. Taken together, it seems plau-
sible to assume that both view-dependent processing of indi-
vidual actions as well as view-dependent processing of the
interactions contribute to the view-dependent recognition of
social interactions. However, a more detailed examination is
needed to tease apart the contributions of these two sources
to the recognition of social interactions. Our physical anal-
ysis provides a starting point for this investigation by sug-
gesting candidate visual cues that correlate with recognition
performance.

Motor-visual neural populations are often considered to be
critical for the recognition of actions although this view is
debated (Jacob and Jeannerod, 2005; Mahon and Caramazza,
2008; Hickok, 2009). If one adopts the former view, the observed
view dependent recognition of social interaction recognition align
with recent observations in macaque monkeys and humans.
Caggiano and colleagues found that the majority (74% of the
tested neurons) motor-visual neurons in area F5 exhibit view-
dependent response behavior (Caggiano et al., 2011). In humans,
a recent study demonstrated view-dependence of visuo-motor
cortical areas involved in action observation and action execution
(Oosterhof et al., 2012) using fMRI. Our findings also add to the
larger growing body of evidence that view-dependent encoding of
visual information is an underlying principle for several stimuli
including objects (Bülthoff and Edelman, 1992), faces (Troje and
Bülthoff, 1996), body postures (Reed et al., 2003), and biological
motion (Verfaillie, 1993).

The human ability to read actions from bodily movements is
most likely of high relevance in natural social interactions even
in the presence of other visual cues conveying social information
(e.g., facial expressions). First, facial expressions are indicative of
the emotional state of a person. Yet, they do not convey the kind
of action that is executed by a person. Hence, the recognition of
actions or social interactions requires the recognition of dynamic
bodily expressions. Second, the perception of facial expression
depends on the immediate situational context, which includes
bodily expressions. For example, the emotion that observers asso-
ciated with a facial expression depended on the body posture
and other object context that was presented along with the facial
expression (Aviezer et al., 2008). Hence, situational context inter-
acts with facial expression recognition. It seems plausible to
assume that the same holds true for bodily actions. We, therefore,
think that various social cues (including bodily social interac-
tion information) are integrated in a non-additive fashion during
recognition to obtain a social percept of other persons.

The current study examined the effect of viewpoint on the
visual recognition of three social interactions. Viewpoint influ-
enced the visual recognition of the three social interactions in
terms either of RT or d′. These observations extend previous
knowledge about viewpoint-dependencies in the visual recogni-
tion of individual body postures (Reed et al., 2003) and biological
motion of single persons (Troje et al., 2005) to two person inter-
actions and show that not all social interactions are encoded in
a view invariant manner. The correlation of the joint velocities
with actual recognition performance indicates that joint veloci-
ties of the upper body, the arms, and the lower leg correlate well
with recognition performance.
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